Low-Power 3V ADC is $\mathbf{0 . 0 5 \%}$ Linear

This application note describes using a microcontroller ($\mu \mathrm{C}$) with integrated digital-to-analog converter (DAC) and comparitors to create a low cost $A D C$ that is 0.05% linear.

The simple 3 V analog-to-digital converter (ADC) shown in Figure 1 is very small, requires no negative supply or expensive precision components, and draws minimal supply current $(10 \mu \mathrm{~A})$. A single conversion consists of 12,000 comparisons and takes about 300 ms . The circuit operates as described below.

Figure 1. This inexpensive, 0.05%-linear ADC can be added to existing equipment or used to upgrade the converter included in certain $\mu \mathrm{Cs}$ (such as the PIC 16C71).

Following each comparison, the microcontroller ($\mu \mathrm{C}$) closes one of two switches: IC2A (comparator high) or IC2B (comparator low). The switches connect either $\mathrm{V}_{\text {REF }}(1.2 \mathrm{~V})$ or ground to their " B " terminals, producing a pulse-width modulation (PWM) signal that is filtered by R3 and C1 and differentially integrated against $\mathrm{V}_{\text {IN }}$. The result is compared against $\mathrm{V}_{\text {REF }}$.

As this action integrates the error voltage up and down, the $\mu \mathrm{C}$ counts the number of comparisons for which the comparator output is high (IC2A switch closed). This count $\left(\mathrm{N}_{\mathrm{H}}\right)$ divided by 12,000 equals the PWM duty cycle. The system is fully ratiometric, so the duty cycle equals $\mathrm{N}_{\mathrm{H}} / 12000=\mathrm{V}_{\mathrm{IN}} / \mathrm{V}_{\text {REF }}$. Rearranging and substituting $\mathrm{V}_{\mathrm{REF}}=1.2 \mathrm{~V}$ yields $\mathrm{V}_{\mathrm{IN}}=\mathrm{N}_{\mathrm{H}} / 10,000$.

Listing 1* enables the the LCD module to display voltage values directly, like a digital panel meter. The subroutine "DVM" produces the actual A/D-conversion values required in an embedded application. Setting the span constant (number of comparisons) to 12,000 yields a 300 ms conversion with $4-1 / 2$ digits of resolution and produces a 1.1999 full-scale display. You can speed the conversion to 30 ms by setting the span constant to 1200 , which produces a $3-1 / 2$ digit display that reads 1.199 at full scale.

IC2's near-ideal switching characteristics account for the low 0.05% nonlinearity. A high-performance, 3Vspecified version of the industry-standard 4066 , IC2 is a quad analog switch that features 35Ω onresistances and 0.1 nA (max) off leakages. You can save space by replacing IC2 with the MAX323 dual analog switch: a 3 V single-pole/single-throw device with specifications similar to those of the MAX4066. The MAX323 resides in an 8-pin μ MAX package (versus a 14-pin SO for the MAX4066).
V_{CC} is limited to the maximum allowed by the $\mu \mathrm{C}(6 \mathrm{~V})$. IC 1 , which operates with V_{CC} as low as 2.8 V over temperature, draws only $7 \mu \mathrm{~A}$ of supply current. The voltage reference in IC1 is stable for capacitive loads smaller than 100 pF or larger than $0.05 \mu \mathrm{~F}$. To ensure stability, the reference's external bypass capacitor (C3) should be kept large.

Figure 2. In Figure 1, the output nonlinearity (as a percentage of full scale) varies as shown.
*See a similar version of this article in the June 19, 1997 issue of $E D N$ magazine.

MORE INFORMATION
MAX4006: QuickView
MAX951: QuickView
-- Full (PDF) Data Sheet (256k)
-- Free Sample
-- Full (PDF) Data Sheet (368k)
-- Free Sample

